
CSS3 Notes

Notes open for creative commons use @ developer blog: https://unfoldkyle.com, github: SmilingStallman,
email: kmiskell@protonmail.com

Learning Sources
MDN Web Docs – MDN Web Docs – CSS3 ← Primary
CSS3 Docs – W3 ← Reference

Intro to CSS3

-CSS - Cascading Style Sheets. Creates rules which are applied to a document to detail how to
display the content. Rules made of properties & selectors:

-Property - A characteristic (ex. color:) whose value defines how to display element(s)
-Declaration - A property paired with a value (ex. blue)
-Selector - Describes what element(s) the property will match and apply to

-Rules contained within stylesheets

-External stylesheet applied to HTML doc by including <link rel=”stylesheet” href=”style.css”>
in <head >
-Can also include styles inside HTML doc by including <style>css code</style> in <head>, but
not very efficient

-General Syntax: selector {
property: value;

}

-ex. h1 { <!--sets <h1> headers to blue text w/ yellow BG w/ black borders-->
color: blue;
background-color: yellow;
border: 1px solid black;
}

-Order of operations for processing: Browser loads HTML and parses HTML, then loads CSS &
parses CSS, then creates DOM (Document Object Model) tree, then displays.

-DOM - built as a tree structure generated from HTML (or XHTML) doc. Each element, attribute,
and piece of text in the DOM is a node. Each node is related to other nodes by where they are
nested (parent, child, grandparent, etc.).

CSS Basic Syntax
-Declaration syntax - property: value (ex. background-color: red)
-If unknown property or invalid value, declaration ignored by CSS browser engine

Declaration blocks
-Declarations grouped together in opening and closing braces with declarations separated by semi-
colons:

{ propertyA: valueA;
 propertyB: valueB;

mailto:kmiskell@protonmail.com
https://kylemiskell.com/
https://www.w3schools.com/cssref/
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS

 propertyC: valueC}
-An empty declaration block is acceptable.

Selectors & Rules
-Selector - prefaces declaration block and tells block what to apply to. Can be element name,
multiple elements selected by a comma, element but only w/ a specific id, etc.
-ex: div, p, #lain-box { declarations} /* applies to all div & p, & unique lain-box */
-Element may be matched by several separate selectors

-Declaration block + selector = ruleset (ie rule)

CSS Statements
-At-rules - Convey metadata, conditional info, and other descriptive info.

-Syntax: @identifierX ‘syntaxBlock’; ex. @import ‘custom.css’;

-Nested statements - conditional requirement for at-rule w/ nested rule that is only applied if
requirement is met.

-ex. @media (min-width: 801px) {
body {

margin: 0 auto;
width: 800px

}
}

-Types:
-@media - checks condition on device running the browser
-@support - checks condition to see if browser supports feature
-@document - checks if page matches xyz condition(s)

-Comments syntax: /* this is a comment */

-Can shorthand some properties:
-ex. can do background: red url(bg-graphic.png) 10px 10px

instead of background-color: red;
 background-image: url(bg-graphic.png);
 background-position: 10px 10px;

Selectors
Types of Selectors:
A) Simple selectors - match 1+ element based on element type, class, or id
B) Attribute selectors - match 1+ element based on their attributes/attribute values
C) Pseudo-classes - match 1+ element based on state (ex. being hovered over, is child of x, etc.)
D) Combinators - Combine selectors (ex. only <p> that come directly after headings)
E) Multiple selectors - multi selectors w/ comma separators in same rule. Apply to all elements in
selector

*note D) and E) not actually selectors, but similar to

Simple Selectors

mailto:-@document

Type selectors (aka element selectors) - Simple case sensitive match to an HTML element(s)
-ex. p { declarations } applies to all <p>
-ex. h1, p, ul {declarations } applies to all <h1>, <p>, and

Class selectors - apply to a named HTML class.
-Syntax: .classname { declarations }
-HTML class def: <element class=”className Optional2ndClassName xClassName”>
-Multiple class names allow you to apply multiple rules on same element (ie. one rule applied to
.className {..}, a second rule via .classNameTwo{…}, ...)

ID Selectors - applied to unique HTML ID (html id=”” attr) . Selector similar to doc frag in HTML.
-Syntax: #uniqueID { declarations }

Universal Selectors - apply to all elements on page. Rarely used. Sometimes used as part of
combinator.
-Syntax: * { declarations }

Attribute Selectors
-match 1+ element based on their attributes/attribute values
-syntax: [attributeName<optionalCondition]

-ex. [attr^=value] -ex. [attr=value]

Presence & Value Attr Selectors
-For conditionals of exact values

-tag[attr] - applies to all elements with attr (of any value)
-tag[attr=”val”] - applies to all elements w/ attr of specified value

-tag[attr~=”val”] - applies to elements w/ specified value separated by spaces in any of attribute
values

-ex.
<li data-quantity="3" data-vegetable>Garlic
<li data-quantity="700g" data-vegetable="not spicy like chili">Red pepper

 /* [data-vegetable~=”spicy”] would apply to second */

Substring Value Attr Selectors
-Offer similar functions to regex selection

-tag[attr^=”val”] - applies to all elements where attr starts with val
-also [attr|=val] - applies to all elements where attr is exactly val or starts with val- (ex. en-us)

-tag[attr$=”val”] - applies to all elements where attr ends with val
-tag[att*=”val”] - applies to all elements where attr contains val (ie exists as substring)

Pseudo-classes & Pseudo-elements
Pseudo-selectors -Apply to certain parts of elements or only elements in certain contexts

-Two types: pseudo-classes & pseudo-elements

Pseudo-classes
-Styles an element, but only when in a selected state (ex. being hovered by mouse)
-Syntax: element:state { … } -ex. a:visited { color: red }

Pseudo-elements
-Apply to only part of the element or after/before/etc. part of the element
-Syntax: element::keyword { … }
-ex. p::first-letter { font-size: 140%}
-ex. [href^=”http”]::after {content: ' ';} /*all w/ href starting in http will have arrow ⤴
following

-Some common ones: ::after, ::before, ::first-letter, ::first-line, ::selection, ::backdrop

Combinators & Multiple Selectors

Group of selectors - A, B {…}
-Applies to any element of A and/or B.
-ex. p, h1 {…} /*Declarations applied to all <p> and <h1>*/

Descendant combinator - A B {…}
-Applies to any elm matching B that is a descendant of A
-ex. table td thead th {..} /*Applies to all th inside a thead inside a table*/

Child combinator - A > B {…}
-Applies to any elm B that is a direct child of A

Adjacent Sibling Combinator: A + B {…}
-Applies to any elm B that immediately follows A, where both are children of same parent
-ex. table th + td {...} /*Applies all <td> directly following <th>, where both children of <table>*/

General Sibling Combinator: A ~ B {…}
-Applies to any elm B that follows A (though does not need to be immediately after), where both are
children of same parent

CSS Values & Units
Numeric Values
-Length/size units - can be provided via #px (ex. width: 350px) or relative units, which are sized in
relation to font-size, viewport size, etc..

Relative units
-em - specified #em, where 1em is the size as the font size. Most common relative unit. Note, that
since element font sizes are inherited from parents, 1em will be equal to parent font size if not
overridden by child, meaning if parent font size changes, so will em.

-ex. .element {
font-size: 20px
width: 4em; /*.element is 80px x 40px (w x h)*/
height: 2em;

}

-rem - root em. Same as em, except 1rem is equal to base font size inherent to root (usually
<html>), disregarding inherited sizes of parent. Prefer rem over em as makes maintenance and
modding code way easier.

-em and rem generally used when layout needs to scale to font size (ex. font size increases, so does
onion layers around surrounding box(es)

-vw, vh - 1/100th of the width, height of the viewport (ex. 40vh is 40%)

-Unitless Values - can either be zero (ex. margin: 0;), a multiplier value (ex. line-height: 1.5;),
number of times to perform action xyz (ex. animation-iteration-count: 5;), etc.

Percents
-Syntax - property: x%;
-Element sized with % value changes in size based on size of parent. Called a liquid layout, vs a
fixed width layout (set px). Useful for responsive dev.
-Fixed width useful for if want element (ex. map) to stay same size & allowing scrolling, dragging,
etc. through

-ex. If or <div> set to width: 70% and their text elements set to font-size: 200%, where
<body> is parent of and <div> and <html> is root (default font size usually 16px), <div>
and will resize to 70% of viewport size and font will resize to 200% of <html> (32px)

Colors
-16.7 million colors
-Keywords - 150 defined colors (ex. red, magenta, black, etc.) available
-Hexadecimal - (ex. #000ff)
-RGB - rgb(###, ###, ###) where # is value between 0 and 255. (ex. rgb(255, 0, 0) is red)
-HSL - Hue-Saturation-Lightness. Hue = base color shade with 0 to 360 value. Saturation = 0 to
100% value. Lightness = 0 to 100% value. (ex. hsl(240, 100%, 50%) is blue)

-HSL & RGB also have HSLA & RGBA modes, where ‘A’ is alpha & sets transparency with 0 to 1
value
-Note that rgb(int, int, int), hsl(int, int, int), etc are CSS functions, as is anything else with
functionName(…) syntax

Opacity
-Sets transparency of all selected elements & their children
-Syntax: opacity: #; /* 0 to 1 value*/

Cascade & Inheritance
The Cascade
-Cascading Style Sheets
-Controls which rule applies to an element when multiple rules exist that select the same element.
More specifically, what property from what rule overrides what other property.

-ex. (selector exists for p, p with id=”blep”, and p with class=”bloop” all specify color:… Which
one wins and is applied?)

-Three components determine the cascade, listed in order of weight: 1. Importance, 2. Specificity, 3.
Source order

Importance
-Can make sure a specific declaration will always win via !important syntax
-Syntax: property: value !important; (ex. color: blue !important;)
-Avoid using unless absolutely necessary as changes way cascade works and makes debugging very
hard

-User applied stylesheets with !important tag will override all other stylesheets applied to page
(author stylesheet, user agent stylesheet, etc)

Specificity
-The most specific selector is applied if multi w/ varying specificity exist
-In order of least to most specific: element → class → id → !important

-Can measure specificity via 4 digit number: ABCD. Higher numbers win.
-A - 1 if deceleration contained in style, else 0 (if A = 1, BCD = 000)
-B - sum of unique ids in selector
-C - sum of each class selector, attr selector, & pseudo-class
-D - sum of each element selector & pseudo-element
-ex. h1 + p::first-letter /*0003 as 2 element selectors + 1 pseudo element*/
-ex. li > a[href*=”en-US”] > .inline-warning */0022 as 1 attr, 2 elm, 1 class*/

Source Order
-If rules still conflict after importance and specificity, then whichever rule is later in the source code
wins

Inheritance
-Specifies whether a property value is inherited by children via property: inheritanceDetails;

-ex. color: inherit;

Inheritance Details
Below options can be set on any property:
-inherit - sets property value to be inherited from parent
-initial - sets property value to be inherited from browser default style sheet, or parent if no browser
default
-unset - sets property value to default value to prevent inheritance from properties that are inherited
by default. Will then inherit from parent instead.h
-revert - reverts the property value of the origin (and user value is applied instead, or user agent
stylesheet, etc. if no user)

-Can apply an inheritance detail to all properties via all: inheritanceDetail; Useful for setting a
temp blank slate during dev.

-CSS reference details inheritance details for all properties, included if inherited or not

The Box Model
-The foundation of web layout. Everything on a page (header, footer, main, image, etc.) can be seen
as a box where each element is represented as a rectangular box, and set to arrange around other
boxes via it’s layers.

Box Properties
-Box made of a series of “onion layers” of various size. Note that all of HTML follows this design,
even if the details of the box are not expanded.

-Content layer - Innermost layer. Size determined by width and height properties. Can also set
relative via min-width, max-width, min-height, max-height.

-Padding - The inner margin surrounding content. Uniform on all four sides with padding or defined
on all four sides via padding-top, padding-right, padding-bottom, and padding-left. Empty space.
Often set via % of block.

-Border - Outside of padding. Default = 0px. Same options as padding, except border or border-

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

someSide. Also, border-style, border-color, border-width and border-top-width, border-left-style,
border-right-color, etc. Ignores % values.

-Margin - Surrounds border and acts as white space between box and other elements. margin,
margin-left, margin-right, etc.. Note that when margins touch, the distance between is value of
larger margin only, not sum of both.

-When short-handing above, is padding: top right bottom left , etc., and margin: H W , etc.

min-width, max-width, min-height, max-height
-Can set so box doesn’t pass a certain width (ex. 1280px)
-margin: 0 auto; - centers box inside it’s parent
-Can stop an item from overflowing out of container/viewport with:

display: block; //makes into block element
margin: 0 auto; //centers inside parent
max-width: 100%; //shrinks element to fit w/i container

Overflow
-Occurs when box set to fixed dimensions & content overflows outside of box
-overflow: value - controls what happens when overflow occurs. Common values:

-visible - overflowing content show outside box. Default.
-auto - overflowing content hidden and scroll bars shown to navigate
-hidden - overflowing content hidden

Background Clip
-By default, box backgrounds stack on top of each other under box and stretch to outer edge of
border
-Background image set in block elements such as div via background-color or background-image:
url(“url or fileLocation Here”).
-Background size set via background-size: value;

-background-clip: value - property to select how far background stretches out. Common values:
-border-box - stretches across padding and border. Default.
-padding-box - stretches across padding, stops before border
-content-box - only inside content, stops before padding

-If set border to be transparent, that section of background-clip will inherit transparency

Types of Boxes
-Notes so far have all been for block level elements
-Type specified by display property.

Most common display values:
-block - content before and after box on separate line break (aka stacked)
-inline - flows smoothly with inline elements with no breaks. Layers outside of content update the

position of surrounding inline elements but have no affect on block boxes. Can not be sized w/
width and height.
-inline-block - flows with other inline elements like inline, but can be sized with width and height
and maintains padding, etc with block elements.

Styling Text

-Good standard to set <html> font size at 10px, then manually set all main sizes. 10Px makes it
easy to multiply.

-Ex. Set <html> to 10px. Then, body font-size to 1.6rem. Then customize indi items as needed.
-color already detailed previously

Font Families
-font-family: fontName; - sets font (ex. Arial). Only applies if font available on machine, else
browser default. Ex. font-family: helvetica, arial, sans-serif;

-Web safe fonts (Font name (generic type): Arial (sans-serif) using Helvetica as preferred
alternative, Courier New (monospace) using Courier as preferred alt, Gerogia (serif), Times New
Roman (serif) w/ Times as preferred alt, Trebuchet MS (sans-serif) beware as often not on mobile
OS, Verdana (sans-serif)

-Web safe font list: https://www.cssfontstack.com/

-Font stack - listing multi fonts in case first font(s) not available for browser. First listed tried first.
-syntax: font-family: fontNameA, “Font NameB”, fontNameC; /*if font name has space, put in
“”*/

-font-size - property that can take px, em, or rem value. Inherited from parent element, in
inheritance chain, with html being the root element. Default html usually = 16px.

Styling Fonts
-font-style property - for italics. Values: normal (no italics), italic, oblique (simulated italic font)

-font-weight property - for bolds of various weight. Values: normal (no bold), bold, lighter (bold
one step lighter than parent’s boldness), bolder (bold one step bolder than parent’s boldness), 100 to
900 numeric value

-text-transform property - sets text as specified. Values: none, uppercase, lowercase, capitalize
(First Letters Capitalized), full-width (puts in full width square)

-text-decoration property - line interactions with text. Values: none, underline, overline (like
underline but above text), line-through (example). Can take multi values at once and can shorthand
by declaring text-decoration then multi values.

https://www.cssfontstack.com/

-text-shadow property - takes up to four values, #px #px #px colorName, where values represent
horizontalOffset verticalOffset blurRadius (higher value = more dispersed shadow) colorOfShadow.

-px & color can be replaced w/ other size vals. Can also use -px to set shadow in opposite dir.
-can give text multi shadows by specifying multi of above separated by commas

Text Layout
-text-align - property for where text is aligned in containing box

-values: left, center, right, justify (spreads text out so that lines of text are all same width)

-line-height - sets space between lines. Can take various length & size units. Multiplier (ex. 1.5)
often best and multiplies on font-size to get line-height.

-letter-spacing - property to set space between letters. Takes most length & size units.
-word-spacing - property to set space between words. Takes most length & size units.

More Common Text Properties

Font shorthand
-When short-handing, write in following order:

font: font-style font-variant font-weight font-stretch font-size line-height font-family
-Only font-size and font-family are required when short-handing

Styling Lists
-list-style-type - property. Sets “type of bullet” values for lists. Bullet types here

-list-style-positon - property. Sets whether bullets sit as part of list (inside value) or separated
(outside value. default)

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type

-Set bullet image with background family discussed earlier by setting ul li {...} ruleset with
background declarations. Allows to set padding, position, size, etc. Set image via background-
image property. Example:

ul {
 padding-left: 2rem; //important to have to prevent overlapping
 list-style-type: none; //sets to no bullet type by default, so can replace with own
}

ul li {
 padding-left: 2rem;
 background-image: url(image.svg);
 background-position: 0 0; //tells to appear at top left of every
 background-size: 1.6rem 1.6rem; //set to be same size as text
 background-repeat: no-repeat; //set to only show once per
}

-Can shorthand via list-style: list-style-type list-style-image list-style-position

List Counting
-start=”#” - html attribute, where # is number to start on
-reversed - html attribute. Binary. Count down to 1 (or start)
-value=”#” - html attribute. Sets list item as # specified. Should set for each if using

Styling Links
-Link states (can be styled by pseudo-classes):

-:link (default state) -:visited -:hover (being hovered over)
-:focus (focused on by tabbing to via keyboard, etc) -:active (when it is being clicked on)

-There are certain longstanding styling people expect links to have (ex. blue underlined).

-Common to include icon next to link (ex. external link icon)
-example: a[href*="http"] {
 background: url(externalLink.svg) no-repeat 100% 0;
 background-size: 16px 16px;
 padding-right: 19px;

}

Links as Buttons
-Can do by putting links in , then setting to display as inline so sit next to each other, then
set <a> as inline-block with different background-color for different states. Make sure to also set
proper width, text color, margins, etc.

Web Fonts
-Fonts specified in a stylesheet, which are then downloaded and used by the browser in styling
-Syntax:

@font-face {
font-family: “fontName”;
src: url(“fontLocation.ttf”) format(“fontType”);

}
-Can then add font to site as would any other font via font-family: “fontName”;

-See here for free and paid font sources

-To ensure cross-browser comparability, use web font generator to generate multi font types
for any fonts used. Generator also generates required @font-face {…} rules, which can be copy
pasted into stylesheets for use of fonts.

Review of Important Design Elements
-Set proper height, border, padding, etc. on elements to create smooth, detailed box modeling
-Use proper DOM modeling (main, body, section, article, etc.)

-When you start a site, here are some basics to cover:
1) set site font-size to 10px (recommended)
2) set relative font sizes for headings, paragraphs, lists, etc /*(if want to default all to same size
 as 16px inheritance, simply set body { font-size: 1.6rem; } after setting html font size to 10px*/
3) set your body line-height
4) center top level heading
5) Set pseudo-element state values for links (:hover, :visited, etc.)
6) Make sure lists match with styling of page
7) Set up navigation and footer and make sure match with styling

Styling Boxes

Box Model Note
-box-sizing: border-box; - Declaration. Normally a box width/height is sum of content + padding +
border. Border-box sets is so box width/height is only content w/h

 Background Styling
-By default background sits under content, padding, and border
-See Backgroud-clip section of this doc for previous notes & review

Background Basics
-background-color - property. Transparent by default.

-background-image: url(fileLocation); - declaration.

-background-repeat - property. By default background-image will repeat across background. This
property sets how or if it will do so. Values:

no-repeat (only shown once) repeat-x (repeat horizontally across BG),
repeat-y (repeat vertically across BG) repeat (repeat horizontally & vertically across BG)

-background-position - property. Sets in specific position in box. Set in #horizontal #vertical value
(ex. background-position: 200px 25px). Can take absolute, relative, percent, and keywords (left,
center, bottom, etc.) values.

-background-size: # #; - declaration. #Width #height. Can take a variety of size values.

Gradients
-background-image : linear-gradient(to direction, firstColor, secondColor);

https://www.fontsquirrel.com/tools/webfont-generator
https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts

-ex. linear-gradient(to bottom, orange, yellow); //color changes from Y to O towards bottom
-Can set more than two colors and specify when to switch to next color by specifying #% after
color. ex. linear-gradient(to bottom, orange, yellow 40%, red)

//move from orange to yellow for 40% of box, then yellow to red

Multiple Backgrounds
-Can include multiple backgrounds. Use same background-image, background-position etc.
properties, and separate backgrounds with commas.
-Note that backgrounds stack on top of each other, with first listed being on top, last listed on
bottom

Shorthand Review
font: font-style font-variant font-weight font-size/line-height font-family;

background: color image repeat position/size attachment;

border: width style color;

margin: top right bottom left;
padding: top right bottom left;
//may declare with 1-4 values

list-style: type position image;

Styling Borders
-See existing border section for review

Border Radius
-border-radius: #px; - Declaration. Rounded corners.
-Can take up to four values - #pxTopLeft #pxTopRight #pxBottomLeft #pxBottomRight
-Can also take other length units (rems, %, etc.)
-Can also make elliptical corners: border-radius: #px / #px or border-radius: #px #px / #px #px

Border Images
-Allows you to set images as border

-Start with a 3x3, 4x4, etc grid design image, which the browser then slices
-Then, tell browser how to parse image, by giving it pixels relative to the image
size to split at. Example: image is 180px and a 3x3 grid, so each slice = 30px

-Syntax: element {
background-clip: padding-box; //background color stops at padding
border-image: url(imageFile.type);
border-image-slice: #;
border-image-repeat: type;

}

-border-image-slice can take up to four values for if slices different sizes: top, right, bottom, left

-border-image-repeat values: stretch, repeat (may result in image fragments), round (repeated, then
stretched slightly so no image fragments), space (repeated, then small amount of space added
between each copy so no fragments appear)

-Short-hand - border-image: url(fileLocation) slice repeat;

Styling Tables
-table-layout - property. Sets table to either auto or fixed, where fixed sets fixed with rows and auto
auto sizes for each entry (messy looking). Set width via width: #sizeValue;

-Setting widths for columns - thead th:nth-child(#) { width: #sizeValue; }, where # is nth column.
nth-child() property selects n child of parent element. Can also set height.

-border-collapse - property. Sets so table is styled where elements are separated by single (table
lines look like grid) or separate lines where table has double lines between elements. collapse value
by standard = typical.

-border - standard border property w/ standard attr/values. Also give <th> and <td> padding to
create space between elements

-background: url(location); - include in tfooter, thead, tbody, etc. to set BG
-Can alternate row backgrounds via pseudo-class calls of :nth-child(odd) and :nth-child(even) on
tbody tr

-Caption styling - style via typical text and box model methods. Has caption-side property for top or
bottom for placed above or below table. text-align: property to align left, center, right, etc.

Box Shadows
-Pretty much same as text shadows but with, surprise, boxes

-box-shadow - property. takes up to four values, #px #px #px colorName, where values represent
horizontalOffset verticalOffset blurRadius (higher value = more dispersed shadow) colorOfShadow.

-px & color can be replaced w/ other size vals. Can also use -px to set shadow in opposite dir.
-can give text multi shadows by specifying multi of above separated by commas
-inset - value. Keyword. Puts shadow inside box. Comes before #px in above deceleration.

-filter - property. Takes a variety of function values that can overlay on elements, such as text,
images, etc. to alter. Functions similar to basic image editor. Some examples:

filter: blur(5px);
filter: brightness(0.4);
filter: contrast(200%);
filter: drop-shadow(16px 16px 20px blue);
filter: grayscale(50%);

-Since very new, should duplicate all properties in deceleration w/ same values but -webkit-filter:
…; to enable cross-browser support
-Can short-hand by listing multiple functions w/ spaces between
-See more values here

CSS Layout

Review
-display - property. Change between inline, block, inline-block, flex, grid, float, fixed, etc. Primary

https://developer.mozilla.org/en-US/docs/Web/CSS/filter
https://developer.mozilla.org/en-US/docs/Web/CSS/filter

layout method.
-ex. setting as default block = on top of each other, inline, now next to each other in row

-position - property to control position of boxes inside other boxes

Normal Flow
-How browser handles layout when do nothing to alter and leave as default
-By default elements interact based on if inline or block and based on margin interactions.
-Block on separate lines. Inline next to each other. Inline-block next to & can take WxH sizing, like
block.
-Elements exist in box model with content, padding, and margin
-Default block size = 100% width of parent element
-Margins combine to be only as big as largest.

Flexbox
-One dimensional (row or column) box layout module
-When wrap elements in box (ex. <div>) and set to display: flexbox, elements in box will auto
arrange themselves in a row or column, auto sizing, arranging, etc. based on defined flex properties

-display: flex; - set on container element (ex. article, section, div). Elements inside will arrange in
row or column w/ all the same height

-Flexbox container called flex container. Runs along main axis which flex items are laid out on and
cross axis which is perpendicular to main. Sizes of elements along axis have cross and main size,
start, & end.

-flex-direction - property. Default is row. Can also set to column, for vertical flexbox

-flex-wrap - property. Flex creates additional rows if needed to have boxes that don’t overflow
(wider boxes, fewer per row). Generally used with flex: sizeValue; declaration to set min width for
each flex item.

-shorthand - Can combine flex-direction and flex-wrap via flex-flow: directionValue wrapValue;

-flex - property. Specifies sizes of flex elements. Can give different elements in flexbox different
sizes with. Common values:

-1: smallest portion of main axis space
-#: any num larger than 1. Element takes up # spaces of total proportion

-ex. first two articles have flex: 1; Third article has flex: 2; Flexbox axis divided into units of
2’s, where articles one and two are each 1/4 size, article three is 2/4 size. Total = 4/4.

-flex is actually a shorthand property. Full definition:
-flex-grow: size; - as discussed above, for portion of axis to grow to
-flex-shrink - as discussed above, for portion of axis to shrink to
-flex-basis - min size as discussed above

Flex Item Alignment
-Align items across main axis via align-items and justify-content properties

-align-items - Controls where flex items sit on cross access. Values:
-stretch - default. Items stretch to fill parent in direction of cross access direction. Items all
 become as long as longest item
-center - items maintain intrinsic dimensions, but center along cross access
-fle x- sta r t and f l ex-end - align items at start or end of cross access, respectively

-align-self: sets align on indi flex items. Same values as align-items

-justify-content - Controls where flex items sit on main access. Values:
-flex-start and flex-end - all items sit at start/end of main axis
-center - items maintain intrinsic dimensions, but center along main access
-space-around - items evenly distributed along main axis with a bit of space at each end
-space-between - same as space-around, but no space at ends

-justify -self : sets justify on indi flex items. Same values as justify-content

Flex Item Ordering
-Change layout of flex items without affecting source order

-order: #; - Deceleration. Would use in call with :first-child, :last-child, :nth-child(#), etc.. Value #
set to is position to be placed in flex. If two children have same #, places via order children appear
in source. Can also set to negative # to add before ‘1’ item.

Nesting Flex Boxes
Example. section - article <!--section flexbox w/ three article flex items-->
 article
 article - div - button <!--div flexbox w/ 5 button flex items-->
 div button
 div button
 button
 button

-Standard nesting, where each flex container gets marked with display: flex; and direct child items
get flex, justify-content, flex-flow, etc. values

-Can cut down num of needed repeating rules with :nth-of-type(x) pseudo-class rule, where (x)
 is the nth (ex. 2nd) child of the parent calling rule on. Can also use :first-child instead of nth-of-
type(1)

Grid Layout
-Two dimensional (row and column) box layout module
 -Same idea as Flexbox (items arranged in size, fill percent etc. of grid container box based on
set/default grid property values). More explicit item placement allowed than with flex.

-display: grid; - Deceleration. Sets container element as grid.
-By default, sizes to 1 column rows stacked on top each other (similar to normal flow)

-grid-template-columns: #value #valueN; - sets width of column, where each # val is a new col
-Can also size with fr unit , where each fr is an equal portion of the grid (same as flex use)
-Can shorthand long manual column entry (ex. 200px twenty times), can use repeat(#, #fr)

 function as value, where # is number times want grid item to generate and fr is size. ex.
 repeat(20, 200px);

-grid-row-gap and grid-column-gap - set gaps between rows and columns. No fr units allowed.
-grid-gap - sets for both row and col gaps

Implicit vs Explicit Grid
-Explicit only specifies # columns and adds more rows (or vice versa) as more items added.

-grid-auto-rows - property. Implicit grid auto-sizes by default. Property takes size values & sets
rows to that size height. Content overflows if larger than specified size.

-ex. grid-auto-rows: 195px;

-min-max(sizeVal, sizeVal) - function. For min and max size values.
-ex. grid-auto-rows: min-max(100px, auto); //min value 100px, max = auto

As Many Columns as Will Fit in Container
-Can set by do by calling repeat(auto-fill , minmax(minSize, maxSize)); for grid-template-columns

Line-based Placement
-properties taken by grid items to place them on grid

-grid-column-start, grid-column-end, grid-row-start, grid-row-end - 4 properties. Start tells to start
at x position in grid, end to end at y position.
-Can shorthand with grid-column: startVal / endVal; and grid-row: startVal / endVal ;
-grid-row and grid-column - also have one value (ex. grid-row: 1;)

-Note that # values represent edges of grid frames, not actual frames.
 -Ex. grid-column: 1 / 5; covers the first 4 grid frames: 1 = edge of frame 1, 5 = edge of frame 4

-Useful for styling header, article, aside, footer, etc

Positioning with g rid-template-areas
-Define rows via “nameOne NameTwo ….” where each name is a placeholder for an element that
will be placed there after that name is assigned to that element
-element desired to place in name placeholder spot on grid assigned name via property grid-area:
nameX;

-example:

.container {
 display: grid;
 grid-template-columns: repeat(2, 1fr)
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";

 grid-gap: 20px;

}

header {grid-area: header;}

article {grid-area: content;}
aside {grid-area: sidebar;}
footer {grid-area: footer;}

Grid Frameworks
-Typical frameworks (styles repeated throughout site) are either 12 or 16 columns wide
-Inspect with Firefox Grid Inspector

Floats
-Element set to float is removed from normal flow and set to flow to left or right of previous
element, with surrounding elements “floating” around float element

-Created so image could float inside middle of text w/ text wrapping around sides of it. Using floats
to create site columns = legacy design.

-float - property. Pulls element out of normal flow and set to left or right. Floats on side given on
parent element. Ex. give float: left; to <div> with <body> as parent, will float on left side of
<body>

-Text will float around body, the only box that moves is the float. Paragraph text will wrap around
float, but float will be sitting on top of paragraph box too, etc..

-Margin must be set on float, not surrounding elements, to function

-Suggested to contain float and floating content in containing box (<div>), etc. to make handle
content scaling easier

Positioning Techniques
-Moving an element out of normal flow to a specified other location. Good for fine tuning specific
items after main layout implemented. position property based.

Main Types of Positioning
A) s tatic - default position value. Normal flow standard.

B) relative - element’s position on page is based relative to its position in the normal flow
(including overlap). Leaves empty gap in flow where moved item once was. Example: move up
50px.

-once set element relative, move out of normal static position with top, bottom, left, right
 properties, which take size values.

C) absolute - element moved fully out of normal flow, then fixed to position on <html> doc edge
(or nearest ancestor edge). Good for overlapping boxes where boxes hidden/shown as desired,
hidden/expanding menus, etc.

-Unlike relative, leaves no gap behind in flow. Essentially sits on own layer separate from other
 items flow

-once set element absolute, item flows will by default be at top of container that it’s static
 position was removed from. Then, push

-set location with top, bottom, left, right properties, where properties push element away from
those locations (ex. top: 30px; would move 30px away from top)
-absolute elements default to last parent container with a position other than static and if none,

 html. To create container for absolute items, set container to relative position

-z-index - property. Sets elements to be under or on top of one another (if overlapping positions).
Takes int values only. Greatest int value on top, etc.. Height axis called z-axis.

D) Fixed - Similar to absolute positioning, except element set relative to browser viewport. Ex.
persistent nav and header that stays in same place on screen as rest of content scrolls

- top, bottom, left, right properties act the same way as absolute. Make sure to set z-index

E) Sticky - Acts as static positioned until hits defined offset in viewport, after which position is
fixed (ex. scroll down to element and element is pulled up as scrolling until hits top of page, then
stay at top as other elements scroll up past it)

-also top, bottom, left, right properties. When element makes contact with specified distance, it
 sticks. ex. set item mid-way down page to stick when it reaches top: 30px (30px from top)

Multi-column Layout
-Set up is similar to flow of newspaper, with columns flowing down and across page. Set num of
columns and col width. Aka multicol.

-column-count - property. Int values. Num of columns. Sets container to multicol.
-column-w idt h - property. Size values. Columns auto-size if only column-count specified
-column-gap - property. Size values. Gap between columns.

-column-rule - property. Size values. Acts as border between columns. Takes up three values: size,
style, color specified in that order. Is shorthand for three properties. Full-hand:

-column-ruler-color , column-rule-style , column-rule-width

Columns & Fragmentation
-Columns often generate where split between columns and text layout is not ideal. Ex. column splits
just after a header.

-break-inside - property. Controls where columns break. Sets columns not to break element into
multiple columns via avoid value.

-Ex. Have a multicol container set around a bunch of <div>, where each <div> has a <h2> and
 a <p>. Set break-inside: avoid; for <div>, which prevents paragraph and header separation

-Also use page-break-inside with same values, which does same thing but is older property for
older browsers

Media Queries
-Allow you so detect a current media state (ex. browser width), checks a condition, and if true
applies specified rules

-@media typeHere(feature: value) {…} - types describe general category of device
-ex @media (max-width: 800px){…} //rule applied only to screens <=800px

-Types
a) all - all devices
b) print - paged & print preview material
c) screen
d) speech - speech synthesizer

-Media features - act as condition for type. See list here
-Some commonly used features:

-width - viewport width -height - viewport height

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
mailto:-@media

-orientation - device orientation (values portrait, landscape)

-Logical operators - Can combine queries with logical operators:
-@media (feature:state) and (feature2:state2) {…} //AND
-@media (feature:state), (feature2:state2) {…} //OR
-@media not (feature:state)) //NOT

-NOT does not apply to rules following comma. Only feature specified for before comma.
-If limiting logical operator query to just one media type: @media type and (…) and (…) {...}

-Can also use >, =, <, <=, with width, etc. ex. @media (200px <= width <= 1920px)

-Can target multi devices at same time. ex. @media screen, print {...}

Cross Browser & Older Browser Support
-Grid is new, only since March 2017. IE ended in 2015, so no support. IE global use is now only
2.87%. Edge replaced IE, and has full support for Grid.

-MDN Docs specify supported features on browsers at bottom of page for property, etc.

-Basic way to manage is to create a layout that is in proper order and arranged well in just HTML,
so that even if support is lacking, site is still at least, readable

-Can create compatible layouts by setting the containing element (ex. section) as a wrapper class
(via class name) for a newer layout feature (ex. grid), then giving inner items (ex. div) classes for
older features (ex. floats). If newer feature is supported it will apply, if not, inner will apply.

Fallback Methods
-display: inline-block; = to create columns. In-line block is ignored if it becomes a flex or grid item
-display: table - items set to be table elements lose this as they are set to be flex/grid items
-multi column layouts - “ “
-flex - fallback for grid. If flex container/element becomes grid, loses flex properties

